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On the basis of the s imi la r i ty  theory,  the law of heat t ransmiss ion  is derived in a form 
which allows extrapolation to the extreme values of pa ramete r s  and, par t icular ly ,  makes 
it applicable to a plane in ter layer  as well as to a cylinder (sphere5 in infinite space. 

A dimensional analysis  of the sys tem of differential equations and boundary conditions descr ibing 
natural convection of gases  and nonmetallic liquids (Pr >> 15 in an enclosed volume yields,  as is well 
known, one dimensionless  group the Rayleigh number Ra = (gfiLxT/ua)h 3, which uniquely defines the heat 
t ransmiss ion  by natural  convection. Its cube root Ra 1/3 can be represented  as a rat io of two linear d imen-  
sions: the inter layer  dimension h and some scale dimension ( v a / g / ~ A T )  l /3.  In order  to explain the physical 
meaning of the second dimension, we use the r e fe r r ed  thickness of the thermal  boundary layer  (6) and, on 
the basis of this concept, we write the o rders  of magnitude for the te rms  in the equation of heat balance 
and in the equation of motion: 

AT AT ; w 
a ~  ~ w - -  ,.~ g~AT. 

6 ~ 6 ; v 62 

F r o m  these equalities we find that 6 ~ (va/g[L:xT) 1/3 or h / b  = CRa ~/3, where C is a numerical  coefficient 
and Ra is defined with r e spec t  to the thickness of the fluid inter layer  h. In this way, the Rayleigh number 
represen t s  the rat io of the total in ter layer  thickness to the thickness of the zone where heat t ransmiss ion  
is effected by conduction. Inasmuch as instability and motion occur beginning at some cri t ical  value Racr  
of the Rayleigh number ,  C(Racr  )1/3 = 1. Therefore ,  h / 5  = ( R a / R a c r  51/3. This analysis makes it possible 
to interpret  the law of heat t r ansmiss ion  and its mathematical  s t ruc ture  for inter layers  of various geo-  
metr  ies. 

For  a plane in ter layer ,  the ra t io  a = k / 6  renders  this law in the form: 

Ra ]z/a 
Nu = \R---~c~ / , 

where both Nu and Ra are  defined in t e rms  of the in ter layer  thickness h. For Racr  = 2000-4000, indeed, 
this law conforms to the many test  data on natural convection in horizontal  and vert ical  plane lnter layers  
a l ready when Ra > 10,000 [1, 3]. 

In writing the general  relation Nu = f(Ra) for a plane inter layer ,  we assume that for an inter layer  of 
any geomet ry  the rat io 

h 
- -  == f(Ra) ( 1 5  
6 

remains  invariant. 

Let  us consider  the t ransmiss ion  of heat through an in ter layer  between two cylinders with d iameters  
d and D, respect ively ,  whose thickness is h = ( D - d ) / 2 .  Because of the a s y m m e t r y  in convective flow, we 
need the dimensions of the zones where the heat t ransmiss ion  is effected by conduction: b 1 and 62 at the 
inner and the outer cylinder,  respect ively ,  their sum equal to b in Eq. (1). The ratio b 1/62, which depends 
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on the hydrodynamic  flow mode, will be ass igned some numer ica l  coefficient.  Using the rules  of adding 
t h e r m a l  r e s i s t a n c e s ,  we find the following express ion  for the heat  t r ansmi s s ion  coefficient:  

1 1 1 
= - - + - - , _  (2) 

(Ztot (:Z 1 0~ 

where  a t o t ,  a t = 2~./dln [(d + 261)/d],and a 2 = 2k/dln[D/(D-262)] r e f e r  to the su r face  of the inner cy l -  
inder.  And, finally,  we have the law of heat  t r a n s m i s s i o n  by natural  convection in a cyl indrical  i n t e r -  
l aye r :  

2 
N u -  h 2 

1 + k T "  f(Ra) (3) 
In 

h/d 2 
1 - -  (1 - -  k) 1 -t- 2 h / d  r (Ra) 

where  k is an empi r i ca l  fac tor  which signifies the effect  of in te r layer  location and geome t ry  (k = 0.5 c o r -  
responds  to equal r e f e r r e d  th icknesses  of the t he rma l  boundary l aye r s  61 and 62), the Nusse l t  number  Nu 
is defined with r e s pec t  to the d i ame te r  of the inner cyl inder  (Nu = ~ t o t d / M ,  and the Rayleigh number  Ra 
is defined with r e s pec t  to the in te r layer  thickness  h. By an analogous ana lys i s ,  we obtain the law of heat  
t r a n s m i s s i o n  by natura l  convection in a spher ica l  in ter layer :  

Nu = 

h 
2 + 1/- 3- 

(4) 
2 +  1 / ~  1 - - k  

2 +  f(Ra) -~- - -  ( h )  h ( l _ k  ) f(Ra) l + 2 V  - z ~ -  
h k y  

These  fo rmulas  a re  conveniently analyzed in r e la t ive  t e rms :  by compar i son  with pure ly  conductive heat  
t rans  miss  ion: 

Nu 

Nu T 

for  a cyl indrical  in te r l aye r  

l n ( l + 2  h 

8 =  
l + k  h 2 

d f(~a) 
In h/d 2 

1 - - ( I - - k )  l + 2h/d f(Ra) 

(5) 

and for a spher ica l  i n t e r l aye r  

8 =  

2 + ~  f ( R a )  1 +  ~ - - 2  ( l - - k )  
k - -  

d 

(6) 

We will now examine the t rends of re la t ions  (3)-(6) as the i r  p a r a m e t e r s  approach  e x t r e m e  value. 
The conclusions will apply equally to cyl indrical  and to spher ica l  i n t e r l aye r s .  

A s  Ra-- -Racr ( f (Ra)  ~ 1), the value of e approaches  unity, i .e. ,  na tura l  convection has no effect  
on the heat  t r ansmis s ion .  

As the in te r layer  cu rva tu re  (i .e. ,  the value of h /d )  d e c r e a s e s ,  e i nc reases  and approaches  its c o r -  
responding value for  a plane in te r layer  so  that  re la t ions  (5), (6) in the l imi t  become e = f(Ra). This means 
that ,  at a fixed value of Ra,  the relat ion e(h/d)  is a monotonic function: as  h / d  i n c r e a s e s ,  e d e c r e a s e s  
f rom its cor responding  value for  a plane in te r layer  (when h / d  = 0) and approaches  its asympto t ic  value 



= 1 when h / d  ~ oo. This conclusion can be eas i ly  ver i f ied exper imen ta l ly  with a constant  gap h and v a r y -  
ing cyl inder  (sphere)  d i a m e t e r s .  

If the d i am e t e r  of the outer  cyl inder  (sphere)  is fixed and the d i ame te r  of the inner one is var ied  
dur ing the t es t s ,  then each ~(h/d) curve  goes through a max imum as a r e su l t  of the opposing effects  which 
the Rayle igh number  and the cu rva tu re  h / d  have on the heat  t r a n s m i s s i o n ,  approaching the value e = 1 
a sympto t i ca l ly  f rom the r igh t  and f rom the left .  The lef t -hand branches  of these  curves  re f l ec t  the de-  
c r ea s ing  s ignif icance of natural  convection in the heat  t r a n s m i s s i o n ,  by vir tue of the dec reas ing  Rayleigh 
number  (decreas ing  in te r layer  th ickness) ,  while the r ight-hand branches  re f l ec t  the dec reas ing  s igni f i -  
cance of natural  convection with increas ing  curva tu re  h / d .  Changes in the law of heat  t r a n s m i s s i o n  due 
to enter ing the Knudsen region,  as the d i a m e t e r  of the inner shell  is dec rea sed ,  haveno t  been taken into 
account here .  Maximum e(h/d)  cor responds  to h / d  ~ 1. 

An impor tan t  conclusion follows f rom an analysis  of the re la t ion  between heat  t r a n s m i s s i o n  and 
in te r l aye r  cu rva tu re  h / d  at a fixed d i a m e t e r  of the inner shell  and with the d i ame te r  of the outer  shell  
var ied ,  i .e . ,  during t rans i t ion  f rom an enclosed in te r l aye r  to an infinite space.  Function Nu(h/d)  is shown 
in Fig. 1, based  on calculat ions accord ing  to Eq. (3) for a cyl indrical  in te r l ayer .  The t rend of the Nu(h/d)  
function for  spher ica l  i n t e r l aye r s  is qual i ta t ively analogous. The calculat ions were  made with values of 
f{Ra) for a horizontal  in te r l aye r  accord ing  to the data in [1-3], the t e m p e r a t u r e  drop for the Rayleigh num-  
b e r  equal to 10~ with the the rmophys ica l  p r o p e r t i e s  equivalent to those of ethyl alcohol,  and with the 
coeff icient  k a s s u m e d  equal to 0.5. The p r e s e n c e  of an empi r i ca l  fac tor  k in formulas  (3)-(6), the physical  
s ignif icance of which has been d i scussed  ea r l i e r ,  makes  these  fo rmulas  somewhat  indeterminate .  This 
difficulty is not so g rea t ,  however ,  inasmuch as the numer ica l  value of k should in all  cases  di f fer  l i t t le  
f r o m  0.5. Fo r  compar i son ,  in Fig. 1 has been plotted the curve  for pure  conduction. As h / d  i n c r e a s e s ,  
accord ing  to the graph,  the depar tu re  f rom the conduction curve at higher values of h / d  begins e a r l i e r  
as d i nc reases .  The other  e x t r e m u m ,  a much f la t te r  one and de te rmined  by the s tabi l iz ing effect  of the 
in t e r l aye r  cu rva tu r e ,  p recedes  a leve l ing  off to a constant value of Nu which will be demoted by Nu* and 
which co r re sponds  to heat  t r a n s m i s s i o n  f rom a body inside an infinite volume. According to (3) and (4), 
sa tura t ion  occurs  when the d imensions  of the outer  shell  a r e  such that  f(Ra) becomes  propor t iona l  to Ra 1/3 
and the following inequalit ies hold t rue:  

for  a cyl inder  
h/d 2 

( 1  - k )  . - - ,  
1 + 2hid f (Ra) (( 1, (7) 

for a sphere 

1 
1 - -  k 2@ h/d 

<< (8) 
f (Ra) ( 1 + 2h/d) = 2h/d (I --  k) 2 + - f (Ra) 

kh/d 

The fo rmula  for  Nu* will be found with the aid of data on heat  t r a n s m i s s i o n  through plane in t e r l aye r s :  
f(Ra) for  Ra > 106 in hor izonta l  and ver t ica l  plane in te r l aye r s  is adequately well exp re s sed  0.07(Ra) 1/3 [1,3]. 
With k = 0.5, re la t ions  (3) and (4) yield: 

for  a cyl inder  

Nu* = 2 (9) 
1 

i n ( l +  0.07(Ra*) 1/3 ) 

for a sphere 

Nu* = 2 + 0.14 (Ra*) I/3, (i0) 

where Ra* = (gfiAT/va)d 3 is now defined with respect to the diameter of the inner cylinder (sphere). The 

diameter of the outer shell, which may be regarded as infinitely large here, is determined from inequality 
(7) or (8) with f(Ra) = 0.07(Ra) I/3. 

We will now examine the feasibility of us hag these relations for a generalization of test data on heat 
t r a n s m i s s i o n  by natura l  convection in in t e r l aye r s  and in infinite vo lumes .  
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Fig. 1. Relation Nu(h/d) at a fixed d iameter  of the inner cylinder:  1) pure 
heat conduction; 2) d = 0.2 mm; 3) d = 2 mm. 

Fig. 2. Relation e(Ra)for  horizontal  cylindrical  in te r layers ;  the points 
represen t  tes t  values, the dashed lines calculations for various values of h 
/ d :  the darkened points r ep resen t  data f rom [5] with h / d  varied from 15 to 
60, and the open c i rc les  data f rom [4] with h / d  = 0.5--4.5; 1) relation ~(Ra) 
for a horizontal plane inter layer  f rom [1, 2, 3]: 2) h / d  = 0.5; 3) 0.93; 4) 1.5; 
5) 2.36; 6) 3.5; 7) 4.5; 8) 12.5; 9) 50. 

Data on heat t ransmiss ion  in horizontal cylindrical  in ter layers ,  taken f rom the technical l i te ra ture  
[4, 5], a re  shown in Fig. 2. The curves  represen t  calculations according to formula (5) with the appro-  
pr ia te  values of the pa rame te r s ,  with the values of f(Ra) for a plane inter lyaer  [1-3], and with k = 0.4. 
The tes t  data, which pertain to a very  wide range of h / d  and Ra, a re  adequately well descr ibed by Eq. (5). 
It is evident here  that the tes t  resul ts  for a small  in ter layer  curvature  (low values of h /d)  are  close to the 
test  resul ts  on heat t ransmiss ion  in a plane inter layer ,  while the test  Values for  a large curvature  a re  
much lower  than the corresponding values for a plane inter layer .  

There  is a vast  amount of data available on heat t ransmiss ion  by natural convection f rom a cylinder 
inside an infinite volume, with Ra* varying f rom 10 -4 to 1012. Empir ica l  formulas have been proposed for 
approximating these test  resul ts  by power functions in Ra* with different proport ional i ty  factors  and power 
exponents over  four ranges of Ra* [8, 9]: thus, the power exponent would be 0, 1 /8 ,  1 / 4 ,  and 1 /3 ,  r e -  
spectively. Relation (9) yields an adequate descript ion of the test  data over  the entire range 10 -4 < Ra* 
< 1012. This is i l lustrated in Fig. 3, where the solid lines represent  calculations according to (9), while 
white and black dots r epresen t  test  data f rom [8, 9] pertaining to horizontal  and vert ical  cyl inders,  r e -  
spectively. Because of the logar i thm in (9), Nu* is only weakly dependent on Ra* within the range of low 
Ra* values. When Ra* var ies  f rom 10 -1 to 10 -4 (through three o rder  of magnitude), for instance, then 
Nu* changes f rom 0.57 to 0.35 (only by 38%). Such a weak dependence at low Ra* values may pass un- 
noticed during tes ts  because of the l imited measurement  precision.  This could explain why Nu* was a s -  
sumed constant and equal to 0.45 in [8, 9] for Ra* < 10 -3. 

The test  data f rom [8, 9] on heat t ransmiss ion  from a sphere  inside an infinite volume are  shown 
in Fig. 4. According to the graph, they fit very  accura te ly  on the curve which represen ts  Eq. (10). For  
the range of low Ra* values there are  no data available but, on the basis of studies concerning the evap-  
oration rate of liquid droplets  [10, 11], it can be said that Nu* ~ 2 when Ra* ~ 1. For  comparison,  on the 
same d iagram has been plotted the Nu*(Ra*) curve  for a cylinder according to (9). Apparently, the curves 
begin to diverge appreciably only when Ra* < 105, i.e., within the range for which no test  data on heat 
t ransmiss ion  from a sphere are  available. This has also led to the conclusion in [8, 9] concerning the com-  
munality of the laws of heat t r ansmiss ion  for a sphere  and a cylinder in an infinite volume. 

An analysis  of heat t ransmiss ion  f rom a cylinder to a t r ansve r se  s t r eam with a low Reynolds num- 
ber  should reveal  a stabilizing effect of natural  convection, i.e., Nu(Re) should tend to a finite value and 
not to zero  when Re ~ 0. Accordingly,  the study in [13] of heat t ransmiss ion  by forced convection at a 
wire  0.1 ram in d iameter  in a ni trogen s t r eam within the 100-1000~ tempera tu re  range has yielded the 
relat ion Nu = 0.45 + 0.55Re ~ Formula  (9) for Nu* yields for the same conditions 0.42-0.48, values close 
to the f i r s t  t e rm of that relat ion.  
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Fig. 3. Relation Nu*(Ra*)  for  a cyl inder :  the dots 
r e p r e s e n t  t e s t  values accord ing  to [8, 9]; the solid 
l ines r e p r e s e n t  calculat ions according  to formula  (9). 
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Fig. 4. Relation Nu*(Ra*) for a 
sphe re  accord ing  to data in [8, 9] 
(dots r e p r e s e n t  t es t  points),  c a l -  
culated according  to fo rmula  (10) 
(1); analogously  for a cyl inder  a c -  
cording to fo rmula  (9) (2). 

An analys is  of these  r e su l t s  leads to some  conclusions con- 
cerning the well-known "ho t -wi re"  method of t h e r m a l  conductivity 
m e a s u r e m e n t s  in gases  and liquids [12]. R e s e a r c h e r s  who use  this 
method t ry  to e l iminate  the effect  of na tura l  convection on the 
overa l l  heat  t r a n s m i s s i o n  by reducing the gap width h, i .e. ,  the 
cu rva tu re  h / d .  If all these  conclusions a r e  co r r ec t ,  then one could 
obviously  r e c o m m e n d  the other ex t r eme  condition: l a rge  values of 
h / d .  In that  case ,  taking advantage of the ve ry  weak relat ion be -  
tween Nu* and Ra* within the range  of smal l  Ra* va lues ,  one can 
m e a s u r e  the t he rma l  conductivity according  to (9) with suffic lent 
a c c u r a c y  - even if the the rmophys ica l  p r o p e r t i e s  of the medium 
(viscos i ty  and the rma l  diffusivity) a r e  known only roughly.  

R should be noted, in conclusion,  that  this ana lys is  of heat  
t r a n s m i s s i o n  by natural  convection in cyl indrical  and spher ica l  

i n t e r l aye r s  has been based  on heat  t r a n s m i s s i o n  data for  plane in t e r l aye r s  and, essen t ia l ly ,  with the e f -  
fect  of cu rva tu re  only taken into account.  Fo r  this r eason ,  the ma jo r  aspec ts  of the resu l t s  must  be v e r i -  
fied by specia l  tes ts  and the re la t ions  must  be refined.  The effect  of cu rva tu re  on the heat  t r a n s m i s s i o n  
was examined ea r l i e r ,  but expe r imen ta l ly  only (e.g. ,  in [4, 14]). This ,  of course ,  r ende r s  these  laws 
appl icable  only to the given range  of p a r a m e t e r  var ia t ion  and does not make it feas ib le  to analyze  changes 
in heat  t r a n s m i s s  ion dur ing ext rapola t ion to e x t r e m e  conditions. 
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N O T A T I O N  

acce le ra t ion  of gravi ty ;  
t he rm a l  volume expansivi ty;  
t e m p e r a t u r e  d i f ference  between in te r layer  boundaries;  
k inemat ic  v iscosi ty ;  
t h e r m a l  diffus ivity; 
in te r layer  th ickness;  
veloci ty  of  fluid; 
t he rm a l  conductivity.  
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